
Metasploit Pro

RPC API Guide

TOC

Revision History i

RPC API 1

Starting the RPC Server 1

Connecting to the RPC Server 3

Calling an API 7

Setting up a Client to Make an API Call 8

Authentication 8

Making a Request 9

Understanding Server Responses 9

Encoding Requests and Responses 10

Versioning API Endpoints 12

Standard API Methods Reference 13

Authentication 13

Core 16

Console 20

Jobs 24

Modules 25

Plugins 32

Sessions 33

Pro API Methods Reference 40

Pro General API 40

Pro License API 43

Pro Updates API 46

iii

Pro Task API 49

Pro Feature API 51

Pro Import API 71

Pro Loot API 72

ProModule API 73

Sample Usage 76

Adding aWorkspace 76

Listing, Downloading, andGenerating a Report 76

Importing Data 77

Exporting Data 78

Tutorial 79

Revision History i

Revision History

Revision date Description

September 07, 2015 Created guide.

December 05, 2016 Fixed broken links to Pro handlers.

RPC API 1

RPC API

The RPC API enables you to programmatically drive theMetasploit Framework and commercial products
using HTTP-based remote procedure call (RPC) services. An RPC service is a collection of message
types and remotemethods that provide a structured way for external applications to interact with web
applications. You can use the RPC interface to locally or remotely executeMetasploit commands to
perform basic tasks like runmodules, communicate with the database, interact with sessions, export
data, and generate reports.

TheMetasploit products are written primarily in Ruby, which is the easiest way to use the remote API.
However, in addition to Ruby, any language with support for HTTPS andMessagePack, such as Python,
Java, and C, can be used to take advantage of the RPC API.

Starting the RPC Server

Before you can use the RPC interface, youmust start the RPC server. There are a couple of ways that
you can start the server depending on theMetasploit product you are using. Choose the appropriate
method below.

Starting the RPC Server for Metasploit Pro

With a standardMetasploit Pro installation, the service is listening at 0.0.0.0:3790 with SSL. The SSL
certificate is self-signed, however you can exchange it for a root-signed certificate as necessary.

If you are running a development environment, the service is listening at 127.0.0.1:50505 with SSL
disabled.

Starting the RPC Server for the Metasploit Framework Using MSGRPC

If you are using theMetasploit Framework, you can load themsgrpc plugin to start the server. Themsgrpc
plugin provides aMessagePack interface that spawns a listener on a defined port and allows you to issue
remote commands so you can facilitate interactions with Metasploit.

To use themsgrpc plugin, you need to launchmsfconsole and run the following command:

msf > load msgrpc

Starting the RPC Server 2

If all goes well, you'll see the following response, which tells you the IP address, username, and password
you can use to connect to themsgrpc server:

[*] MSGRPC Service: 127.0.0.1:55552
[*] MSGRPC Username: msf
[*] MSGRPC Password: abc123
[*] Successfully loaded plugin: msgrpc

Since no options were specified, the default address (127.0.0.1), default port (55552), and random
credentials were used. SSL is disabled by default. If you want to customize these settings, you can supply
the following options with the load command to define the address, port, username, and password that can
be used to connect to the server:

l ServerHost : The local hostname that the server listens on.

l ServerPort: The local port that the server listens on.

l User: The username to access the server.

l Pass: The password to access the server. The passwordmust be enclosed in single quotes.

l SSL: Enables or disables SSL on the RPC socket. Set this value to true or false.

For example, if you want to connect to the server with user/pass123, you can enter the following
command:

msf > load msgrpc ServerHost=192.168.1.0 ServerPort=55553 User=user Pass='pass123'

Which returns the following response:

[*] MSGRPC Service: 192.168.1.0:55553
[*] MSGRPC Username: user
[*] MSGRPC Password: pass123
[*] Successfully loaded plugin: msgrpc

Starting the RPC Server for the Metasploit Framework Using MSFRPCD

Another way to start the server is to use themsfrpcd tool, which enables the server to listen on a particular
port and provide clients that connect to it with an RPC interface to theMetasploit Framework.

You'll need to cd into your framework directory, if you're a Framework user, or
metasploit/apps/pro/msf3 directory if you are a Pro user, and run the following command:

ruby msfrpcd -U <username> -P <username> -f

You can supply the following arguments:

Connecting to the RPC Server 3

l -a <opt>: The local hostname that the server listens on.

l -p <opt>: The local port that the server listens on.

l -U <opt>: The username to access the server.

l -P <opt>: The password to access the server.

l -S: Enables or disables SSL on the RPC socket. Set this value to true or false. SSL is on by default.

l -f: Runs the daemon in the foreground.

For example, if you want to connect to the local server with 'user/pass123', you can enter the following
command:

ruby msfrpcd -U user -P pass123

Which returns the following response:

[*] MSGRPC starting on 0.0.0.0:55553 (SSL):Msg...
[*] MSGRPC ready at 2015-06-04 10:32:08 -0700.

Connecting to the RPC Server

Now that the RPC server is up and running, you can connect to it using either themsfrpc-client gem or the
msfrpc utility, depending on how you set up your server.

Connecting with the MSFRPC Login Utility

Themsfrpc login utility enables you to connect to RPC server throughmsfrpcd. If you started the server
using themsfrpcd tool, cd into your framework directory, if you're a Framework user, or
metasploit/apps/pro/msf3 directory if you are a Pro user, and run the following command to
connect to the server:

ruby msfrpc -U <username> -P <pass> -a <ip address>

You can provide the following options:

l - P <opt>: The password to access msfrpcd.

l - S: Enables or disables SSL on the RPC socket. Set this value to true or false. SSL is on by default.

l -U <opt>: The username to access msfrpcd.

l -a <opt>: The address msfrpcd runs on.

l -p <opt>: The port themsfrpc listens on. The default port is 55553.

Connecting to the RPC Server 4

For example, if you want to connect to the local server, you can enter the following command:

ruby msfrpc -U user -P pass123 -a 0.0.0.0

Which returns the following response:

[*] exec: ruby msfrpc -U user -P pass123 -a 0.0.0.0

[*] The 'rpc' object holds the RPC client interface
[*] Use rpc.call('group.command') to make RPC calls

Connecting with the Metasploit RPC Client Gem

If you do not haveMetasploit Pro or theMetasploit Framework installed on your client machine, you can
use theMetasploit RPC client gem to connect to the RPC server. The gem provides a client to access the
Metasploit Pro RPC service and depends on librex andMessagePack.

In order to install themsfrpc-client gem, the client must be running Ruby 2.0+.

The first thing you need to do is install librex. Due to the size of the librex documentation, it is suggested
that you install librex separately first without the built-in documentation using the following command:

gem install librex --no-rdoc --no-ri

If the gem is installed successfully, you'll see the following:

Successfully installed librex-0.0.999
1 gem installed

After you install librex, you are ready to install themsfrpc-client gem. To install the gem, run the following
command:

gem install msfrpc-client

If the gem is installed successfully, you'll see the following:

Successfully installed msfrpc-client-1.0.3
Parsing documentation for msfrpc-client-1.0.3
Done installing documentation for msfrpc-client after 5 seconds
1 gem installed

After the gem has been installed, themsfrpc-client library becomes available. Two example files, msfrpc_
irb.rb msfrpc_pro_report.rb, are installed along with the gem. The following commands can be used view
the examples:

cd `gem env gemdir`/gems/msfrpc-client-*/examples
ls
msfrpc_irb.rb msfrpc_pro_report.rb

Connecting to the RPC Server 5

Themsfrpc_irb.rb script is a good starting point for using the API. This script, along with msfrpc_pro_
report.rb, use a standard option parsingmechanism exposed by the Ruby gem, which allows for you to
connect to the RPC service.

For a standardMetasploit Pro installation, the only options you need to specify are the host and either a
username and password or an authentication token. The example below authenticates to the local
Metasploit Pro instance using the user account you set up for the RPC server:

ruby ./msfrpc_irb.rb --rpc-user user --rpc-pass pass123
[*] The RPC client is available in variable 'rpc'
[*] Successfully authenticated to the server
[*] Starting IRB shell...
>>

You can provide the following command line options to configure the RPC destination. To view the
options, run msfrpc_irb.rb with the --rpc-help option, as shown below:

./msfrpc_irb.rb --rpc-help

Usage: ./msfrpc_irb.rb [options]

RPC Options:
--rpc-host HOST
--rpc-port PORT
--rpc-ssl <true|false>
--rpc-uri URI
--rpc-user USERNAME
--rpc-pass PASSWORD
--rpc-token TOKEN
--rpc-config CONFIG-FILE
--rpc-help

The username and password options can either correspond to the credentials you set up for the server
through themsgrpc plugin or aMetasploit Pro user account. As an alternative to aMetasploit Pro account,
you can use an authentication token instead.

Generating an API Token

To generate an API key, you can log in to theMetasploit Pro web interface (https://localhost:3790) and
select Administration > Global Settings. When theGlobal Settings page appears, click on theAPI
Keys tab and then click theCreate an API key button. The form will require that you provide a key name
for the API token. After you provide a name, click theCreate button to generate the token.

Connecting to the RPC Server 6

An important consideration with themsfrpc-client library is that the authentication token is automatically
passed into eachmethod call for you, so when calling an API function such as "core.version", you do not
need to specify the token as the first parameter. For example, the following code works as expected:

>> rpc.call("core.version")
=> {"version"=>"4.0.0-release", "ruby"=>"1.9.2 x86_64-linux 2010-04-28",
"api"=>"1.0"}

Connecting with a YAML File

Instead of manually inputting the configuration settings each time you connect to the RPC service, you
can store the configuration settings in a YAML file. The YAML file maps the command line options to the
appropriate values and enables you to point to the file using the --rpc-config option.

The configuration file must contain the following content:

options:
host: server
port: 3790
user: username
pass: password
token: token
ssl: true
uri: /api/1.0

The following is an example of a YAML file:

options:
host: 0.0.0.0
port: 3790
user: user
pass: pass123
token: 1234567890
ssl: true
uri: /api/1.0

For example, to point to the YAML file, you can enter something like:

ruby ./msfrpc_irb.rb --rpc-config ./sample.yml

Calling an API 7

Connecting with the Process Environment

You can also use the process environment to set these options. The environment is only considered if the
command line options are not specified.

The corresponding environment variable names are:

l MSFRPC_HOST

l MSFRPC_PORT

l MSFRPC_USER

l MSFRPC_PASS

l MSFRPC_TOKEN

l MSFRPC_SSL

l MSFRPC_URI

l MSFRPC_CONFIG

Calling an API

To call an API:

rpc.call("pro.about")

In the example, 'pro' is name of the handler and 'about' is themethod name.

Framework Handlers

Handlers include 'core', 'auth', 'console', 'module', 'session', 'plugin', 'job', and 'db'.

To view the APIs available in theMetasploit Framework, go here.

To see where the Framework handlers are registered, go here.

Pro Handlers

Handlers include 'pro'.

https://github.com/rapid7/metasploit-framework/tree/master/lib/msf/core/rpc/v10
https://github.com/rapid7/metasploit-framework/blob/master/lib/msf/core/rpc/v10/service.rb#L50

Setting up a Client to Make an API Call 8

To view the APIs available in Metasploit Pro, go to the following directory:
/path/to/metasploit/pro/engine/rpc.

To see where Pro handlers are registered, go to the following file,
/path/to/metasploit/apps/pro/vendor/bundle/ruby/2.3.0/gems/metasploit-

framework-<version>/lib/msf/core/services.rb, and find line 50.

Setting up a Client to Make an API Call

The following example shows how you can set up a client to make an API call:

Set up client

require_relative 'metasploit_rpc_client'
client = MetasploitRPCClient.new(host:host, token:api_token, ssl:false, port:50505)

Authentication

Access to theMetasploit API is controlled through authentication tokens. An authentication is typically a
randomly generated 32-byte string, but may be created ad-hoc as well. These tokens come in two forms;
temporary and permanent.

A temporary token is returned by the API call auth.login, which consults an internal list of valid usernames
and passwords. If a correct username and password is supplied, a token is returned that is valid for 5
minutes. This token is automatically extended every time it is used to access an API method. If the token
is not used for 5minutes, another call to auth.login must bemade to obtain a new token.

A permanent token acts as an API key that does not expire. Permanent tokens are stored in the database
backend (api_keys table) when a database is available and inmemory otherwise. There are two ways to
create a new permanent token through the API. The first method is to authenticate using a valid login, then
using the temporary token to call the auth.token_generatemethod. This will create a permanent token
either in the database backend or in-memory, depending on the whether a database is present.

TheMetasploit Framework RPC server requires a username and password to be specified. This username
and password combination can be used with the auth.login API to obtain a temporary token that will grant
access to the rest of the API.

Metasploit Pro, by contrast, generates a permanent authentication token on startup and store this token in
a file named <install>/apps/pro/engine/tmp/service.key. TheMetasploit Pro interface provides the ability
to manage permanent authentication tokens through the web interface.

Making a Request 9

The sequence below demonstrates the use of the auth.login API to obtain a token and the subsequent use
of this token to call the core.version API.

Client:

["auth.login", "username", "password"]

Server:

{ "result" => "success", "token" => "a1a1a1a1a1a1a1a1" }

Client:

["core.version", "a1a1a1a1a1a1a1a1"]

Server:

{
"version" => "4.0.0-release",
"ruby" => "1.9.1 x86_64-linux 2010-01-10"
}

Making a Request

Client requests are encapsulated in a standard HTTP POST to a specific URI, typically "/api" or "/api/1.0".
This POST request must have the Content-Type header specified as "binary/message-pack", with the
body of the request containing actual RPC message.

A sample request is shown below:

POST /api/1.0 HTTP/1.1
Host: RPC Server
Content-Length: 128
Content-Type: binary/message-pack
<128 bytes of encoded data>

Understanding Server Responses

Server responses are standard HTTP replies. The HTTP status code indicates the overall result of a
particular request. Themeaning of each status code is listed below:

l 200: The request was successfully processed

l 500: The request resulted in an error

Encoding Requests and Responses 10

l 401: The authentication credentials supplied were not valid

l 403: The authentication credentials supplied were not granted access to the resource

l 404: The request was sent to an invalid URI

In all circumstances except for a 404 result, the detailed response will be included in themessage body.

The response content-type will always be "binary/message-pack" with the exception of the 404 response
format, in which case the body may contain a HTML document.

A sample response is shown below

HTTP/1.1 200 OK
Content-Length: 1024
Content-Type: binary/message-pack
<1024 bytes of encoded data>

Encoding Requests and Responses

All requests and responses use theMessagePack encoding (http://www.msgpack.org/). This encoding
provides an efficient, binary-safe way to transfer nested data types. MessagePack provides
implementations for many different languages, all under the Apache open source license.

TheMessagePack specification is limited to a small set of data types. For this reason, non-native types,
such as dates, are represented as integers or strings. SinceMessagePack treats strings as binary
character arrays, special care needs to be taken when using this encoding with Unicode-friendly
languages. For example, in Java, strings used in requests and decoded from responses should always
use the byte arrays type.

An example of aMessagePack encoded array is shown below:

["ABC", 1, 2, 3].to_msgpack()
ð "\x94\xA3\x41\x42\x43\x01\x02\x03"

Encoding Requests

Requests are formatted as MessagePack encoded arrays. The specific form is ["MethodName",
"Parameter1", "Parameter2", …].

With the exception of the authentication API, all methods expect an authentication token as the second
element of the request array, with the rest of the parameters defined by the specific method. Although
most methods use strings and integers for parameters, nested arrays and hashes may be supplied as well.

Encoding Requests and Responses 11

Methods that accept a list of items as input typically expect these as a single parameter consisting of an
array of elements and not a separate parameter for each element. Somemethods may accept a parameter
consisting of a hash that contains specific options.

A call to an authenticationmethodmay take the following form:

["auth.login", "username", "password"]

A call to a versionmethodmay take the following form:

["core.version", "<token>"]

A call to amore complex methodmay take the following form:

["modules.search", "<token>", {
"include" => ["exploits", "payloads"],
"keywords" => ["windows"],
"maximum" => 200
}]

Encoding Responses

Responses use the sameMessagePack encoding as requests and are always returned in the form of a
hash, also known as a dictionary. If this hash contains an "error" element with the value of true, additional
information about the error will be present in the hash fields, otherwise, the hash will contain the results of
the API call.

A sample successful response is shown below:

{
"version" => "4.0.0-release",
"ruby" => "1.9.1 x86_64-linux 2010-01-10"
}

A sample error response is shown below:

{
"error" => true,
"error_class" => "ArgumentError",
"error_message" => "Unknown API Call"
}

A sample successful response with nested data is shown below:

{
"name" => "Microsoft Server Service Stack Corruption",
"description" => "This module exploits a parsing flaw…",
"license" => "Metasploit Framework License (BSD)",
"filepath" => "/modules/exploits/windows/smb/ms08_067_netapi.rb",

Versioning API Endpoints 12

"version" => "12540",
"rank" => 500,
"references" =>
[
["CVE", "2008-4250"],
["OSVDB", "49243"],
["MSB", "MS08-067"]
],
"authors" =>
[
"hdm <hdm@metasploit.com>",
"Brett Moore <brett.moore@insomniasec.com>",
],
"targets" =>
{
0 => "Automatic Targeting",
1 => "Windows 2000 Universal",
2 => "Windows XP SP0/SP1 Universal",
3 => "Windows XP SP2 English (NX)",
4 => "Windows XP SP3 English (NX)"
}
"default_target" => 0

Versioning API Endpoints

The last parameter in the API URL is the requested version number. To prepare your code for future
versions it is recommended that you append "/1.0" or whatever version of this API you have tested
against. A request for the bare API URLwithout a version number will result in the latest version of the API
being used to handle the request. For example, the request below will request that version 1.1 of the API
should be used.

POST /api/1.1 HTTP/1.1
Host: RPC Server
Content-Length: 128
Content-Type: binary/message-pack
<128 bytes of encoded data>

Standard API Methods Reference 13

Standard API Methods Reference

The API methods below are available across all editions of theMetasploit product. All API functions use
the naming convention '<group>.<method>'. All product editions share the basic API groups defined in the
Metasploit Framework. Metasploit Pro provides a number of additional APIs for accessing the Pro
features. For more information on the Pro APIs, see the Pro API Methods Reference.

For more insight on the standard APIs, check out the online developer documentation.

Authentication

The authentication API provides methods for logging in andmanaging authentication tokens. The only API
that can be accessed without a valid authentication token is auth.login, which in turn returns a token.

All API users are treated as administrative users and can trivially gain access to the underlying operating
system. For this reason, you should always protect API keys as if they granted root access to the system
onwhichMetasploit is running.

auth.login

The auth.login method allows a username and password to be supplied which in turn grants the caller with
a temporary authentication token. This authentication token expires 5minutes after the last request made
with it.

Syntax

auth.login(String: Username, String: Password)

Successful Request Example

Client:

["auth.login", "MyUserName", "MyPassword"]

Server:

{ "result" => "success", "token" => "a1a1a1a1a1a…" }

https://rapid7.github.io/metasploit-framework/api/Msf/RPC.html

Authentication 14

Unsuccessful Request Example

Client:

["auth.login", "MyUserName", "BadPassword"]

Server:

{
"error" => true,
"error_class" => "Msf::RPC::Exception",
"error_message" => "Invalid User ID or Password"

}

auth.logout (String: LogoutToken)

The auth.logout method will remove the specified token from the authentication token list. Note that this
method can be used to disable any temporary token, not just the one used by the current user. This
method will still return "success" when a permanent token is specified, but the permanent token will not be
removed.

Successful Request

Client:

["auth.logout", "<token>", "<LogoutToken>"]

Server:

{ "result" => "success" }

Unsuccessful Request

Client:

["auth.logout", "<token>", "BadToken"]

Server:

{
"error" => true,
"error_class" => "Msf::RPC::Exception",
"error_message" => "Invalid Authentication Token"

}

Authentication 15

auth.token_add (String: NewToken)

The auth.token_add will add an arbitrary string as a valid permanent authentication token. This token can
be used for all future authentication purposes. This method will never return an error, as collisions with an
existing token of the same namewill be ignored.

Client:

["auth.token_add", "<token>", "<NewToken>"]

Server:

{ "result" => "success" }

auth.token_generate

The auth.token_generatemethod will create a random 32-byte authentication token, add this token to the
authenticated list, and return this token to the caller. This method should never return an error if called with
a valid authentication token.

Client:

["auth.token_generate", "<token>"]

Server:

{ "result" => "success", "token" => "a1a1a1a1a1a…" }

auth.token_list

The auth.token_list method will return an array of all tokens, including both temporary tokens stored in
memory and permanent tokens, stored either in memory or in the backend database. This method should
never return an error if called with a valid authentication token.

Client:

["auth.token_list", "<token>"]

Server:

{ "tokens" => ["token1", "token2", "token3"] }

Core 16

auth.token_remove (String: TokenToBeRemoved)

The auth.token_removemethod will delete a specified token. This will work for both temporary and
permanent tokens, including those stored in the database backend. This method should never return an
error if called with a valid authentication token.

Client:

["auth.token_remove", "<token>", "<TokenToBeRemoved>"]

Server:

{ "result" => "success" }

Core

The core API provides methods for managing global variables in the framework object, saving the current
configuration to disk, manipulating themodule load paths, reloading all modules, managing background
threads, and retrieving the server version.

core.add_module_path (String: Path)

This method provides a way to add a new local file system directory (local to the server) as amodule path.
This can be used to dynamically load a separatemodule tree through the API. The pathmust be
accessible to the user ID running theMetasploit service and contain a top-level directory for eachmodule
type (exploits, nop, encoder, payloads, auxiliary, post). Module paths will be immediately scanned for new
modules andmodules that loaded successfully will be immediately available. Note that this will not unload
modules that were deleted from the file system since previously loaded (to remove all deletedmodules,
the core.reload_modules method should be used instead). This modulemay raise an error response if the
specified path does not exist.

Client:

["core.add_module_path", "<token>", "<Path>"]

Server:

{
'exploits' => 800,
'auxiliary' => 300,
'post' => 200,
'encoders' => 30,
'nops' => 25,

Core 17

'payloads' => 250
}

core.module_stats

This method returns the number of modules loaded, broken down by type.

Client:

["core.module_stats", "<token>"]

Server:

{
'exploits' => 800,
'auxiliary' => 300,
'post' => 200,
'encoders' => 30,
'nops' => 25,
'payloads' => 250

}

core.reload_modules

This method provides a way to dump and reload all modules from all configuredmodule paths. This is the
only way to purge a previously loadedmodule that the caller would like to remove. This method can take a
long time to return, up to aminute on slow servers.

Client:

["core.reload_modules", "<token>"]

Server:

{
'exploits' => 800,
'auxiliary' => 300,
'post' => 200,
'encoders' => 30,
'nops' => 25,
'payloads' => 250

}

Core 18

core.save

This method causes the current global datastore of the framework instance to be stored to the server's
disk, typically in ~/.msf3/config. This configuration will be loaded by default the next timeMetasploit is
started by that user on that server.

Client:

["core.save", "<token>"]

Server:

{ "result" => "success" }

core.setg (String: OptionName, String: OptionValue)

This method provides a way to set a global datastore value in the framework instance of the server.
Examples of things that can be set include normal globals like LogLevel, but also the fallback for any
modules launched from this point on. For example, the Proxies global option can be set, which would
indicate that all modules launched from that point on should go through a specific chain of proxies, unless
the Proxies option is specifically overridden for that module.

Client:

["core.setg", "<token>", "<OptionName>", "<OptionValue>"]

Server:

{ "result" => "success" }

core.unsetg (String: OptionName)

This method is the counterpart to core.setg in that it provides a way to unset (delete) a previously
configured global option.

Client:

["core.unsetg", "<token>", "<OptionName>"]

Server:

{ "result" => "success" }

Core 19

core.thread_list

This method will return a list the status of all background threads along with an ID number that can be used
to shut down the thread.

Client:

["core.thread_list", "<token>"]

Server:

{
0 =>
{

"status" => "sleep",
"critical" => true,
"name" => "SessionScheduler-1",
"started" => "2011-05-29 15:36:03 -0500"
},
1 =>
{
"status" => "sleep",
"critical" => true,
"name" => "SessionScheduler-2",
"started" => "2011-05-29 15:36:03 -0500"

}
}

core.thread_kill (Integer: ThreadID)

This method can be used to kill an errant background thread. The ThreadID shouldmatch what was
returned by the core.thread_list method. This method will still return success even if the specified thread
does not exist.

Client:

["core.thread_kill", "<token>", "<ThreadID>"]

Server:

{ "result" => "success" }

Console 20

core.version

This method returns basic version information about the running framework instance, the Ruby interpreter,
and the RPC protocol version being used.

Client:

["core.version", "<token>"]

Server:

{
"version" => "4.0.0-release",
"ruby" => "1.9.1 x86_64-linux 2010-01-10",
"api" => "1.0"

}

core.stop

This method will result in the immediate shutdown of theMetasploit server. This should only be used in
extreme cases where a better control mechanism is unavailable. Note that the caller may not even receive
a response, depending on how fast the server is killed.

Client:

["core.stop", "<token>"]

Server:

{ "result" => "success" }

Console

The Console API provides the ability to allocate and work with theMetasploit Framework Console. In
addition to being able to send commands and read output, thesemethods expose the tab completion
backend as well being able to detach from and kill interactive sessions. Note that consoles provide the
ability to do anything a local Metasploit Framework Console user may do, including running system
commands.

Console 21

console.create

The console.createmethod is used to allocate a new console instance. The server will return a Console ID
("id") that is required to read, write, and otherwise interact with the new console. The "prompt" element in
the return value indicates the current prompt for the console, whichmay include terminal sequences.
Finally, the "busy" element of the return value determines whether the console is still processing the last
command (in this case, it always be false). Note that while Console IDs are currently integers stored as
strings, thesemay change to become alphanumeric strings in the future. Callers should treat Console IDs
as unique strings, not integers, wherever possible.

Client:

["console.create", "<token>"]

Server:

{
"id" => "0",
"prompt" => "msf > ",
"busy" => false

}

console.destroy (String: ConsoleID)

The console.destroy method deletes a running console instance by Console ID. Consoles should always
be destroyed after the caller is finished to prevent resource leaks on the server side. If an invalid Console
ID is specified, the "result" element will be set to the string "failure" as opposed to "success".

Client:

["console.destroy", "<token>", "ConsoleID"]

Server:

{ "result" => "success" }

console.list

The console.list method will return a hash of all existing Console IDs, their status, and their prompts.

Client:

["console.list", "<token>"]

Server:

Console 22

{
"0" => {

"id" => "0",
"prompt" => "msf exploit(\x01\x02\x01\x02handler\x01\x02) > ",
"busy" => false
},

"1" => {
"id" => "1",
"prompt" => "msf > ",
"busy" => true
}

}

console.write (String: ConsoleID, String: Data)

The console.write method will send data to a specific console, just as if it had been typed by a normal
user. This means that most commands will need a newline included at the end for the console to process
them properly.

Client:

["console.write", "<token>", "0", "version\n"]

Server:

{ "wrote" => 8 }

console.read (String: ConsoleID)

The console.readmethod will return any output currently buffered by the console that has not already been
read. The data is returned in the raw form printed by the actual console. Note that a newly allocated
console will have the initial banner available to read.

Client:

["console.read", "<token>", "0"]

Server:

{
"data" => "Framework: 4.0.0-release.14644[..]\n",
"prompt" => "msf > ",
"busy" => false

}

Console 23

console.session_detach (String: ConsoleID)

The console.session_detachmethod simulates the user using the Control+Z shortcut to background an
interactive session in theMetasploit Framework Console. This method can be used to return to themain
Metasploit prompt after entering an interactive session through a "sessions –i" console command or
through an exploit.

Client:

["console.session_detach", "<token>", "ConsoleID"]

Server:

{ "result" => "success" }

console.session_kill (String: ConsoleID)

The console.session_kill method simulates the user using the Control+C shortcut to abort an interactive
session in theMetasploit Framework Console. This method should only be used after a "sessions –i"
command has been written or an exploit was called through the Console API. In most cases, the session
API methods are a better way to session termination, while the console.session_detachmethod is a better
way to drop back to themainMetasploit console.

Client:

["console.session_kill", "<token>", "ConsoleID"]

Server:

{ "result" => "success" }

console.tabs (String: ConsoleID, String: InputLine)

The console.tabs command simulates the user hitting the tab key within theMetasploit Framework
Console. This method will take a current line of input and return the tab completion options that would be
available within the interactive console. This allows an API caller to emulate tab completion through this
interface. For example, setting the InputLine to "hel" for a newly allocated console returns a single element
array with the option "help".

Client:

["console.tabs", "<token>", "ConsoleID", "InputLine"]

Server:

Jobs 24

{ "tabs" => ["option1", "option2", "option3" }

Jobs

The Jobs API provides methods for listing jobs, obtainingmore information about a specific job, and killing
specific jobs. Thesemethods equate the "jobs" command in theMetasploit Framework Console are
typically used tomanage backgroundmodules.

job.list

The job.list method will return a hash, keyed by Job ID, of every active job. The Job ID is required to
terminate or obtain more information about a specific job.

Client:

["job.list", "<token>"]

Server:

{ "0" => "Exploit: windows/browser/ms03_020_ie_objecttype" }

job.info (String: JobID)

The job.info method will return additional data about a specific job. This includes the start time and
complete datastore of themodule associated with the job.

Client:

["job.info", "<token>", "JobID"]

Server:

{
"jid" => 0,
"name" => "Exploit: windows/browser/ms03_020_ie_objecttype",
"start_time" => 1306708444,
"uripath" => "/aHdzfE1i3v",
"datastore" => {

"EnableContextEncoding" => false,
"DisablePayloadHandler" => false,
"SSL" => false,
"SSLVersion" => "SSL3",
"SRVHOST" => "0.0.0.0",
"SRVPORT" => "8080",

Modules 25

"PAYLOAD" => "windows/meterpreter/reverse_tcp",
"LHOST" => "192.168.35.149",
"LPORT"=>"4444"
}

}

job.stop (String: JobID)

The job.stopmethod will terminate the job specified by the Job ID.

Client:

["job.stop", "<token>", "JobID"]

Server:

{ "result" => "success" }

Modules

TheModules API provides the ability to list modules, enumerate their options, identify compatible
payloads, and actually run them. All module types share the same API group and themodule type is
passed in as a parameter when the request would be ambiguous otherwise.

module.exploits

Themodule.exploits method returns a list of all loaded exploit modules in the framework instance. Note
that the "exploit/" prefix is not included in the path name of the returnmodule.

Client:

["module.exploits", "<token>"]

Server:

{ "modules" => [
"linux/pop3/cyrus_pop3d_popsubfolders",
"linux/ids/snortbopre",
[…]
]

}

Modules 26

module.auxiliary

Themodule.auxiliary method returns a list of all loaded auxiliary modules in the framework instance. Note
that the "auxiliary/" prefix is not included in the path name of the returnmodule.

Client:

["module.auxiliary", "<token>"]

Server:

{ "modules" => [
"pdf/foxit/authbypass",
"admin/motorola/wr850g_cred",
"admin/oracle/post_exploitation/win32exec"
[…]
]

}

module.post

Themodule.post method returns a list of all loaded post modules in the framework instance. Note that the
"post/" prefix is not included in the path name of the returnmodule.

Client:

["module.post", "<token>"]

Server:

{ "modules" => [
"multi/gather/env",
"windows/escalate/bypassuac",
[…]
]

}

module.payloads

Themodule.payloads method returns a list of all loaded payloadmodules in the framework instance. Note
that the "payload/" prefix is not included in the path name of the returnmodule.

Client:

["module.payloads", "<token>"]

Modules 27

Server:

{ "modules" => [
"linux/armle/exec",
"linux/armle/shell_reverse_tcp",
[…]
]

}

module.encoders

Themodule.encoders method returns a list of all loaded encoder modules in the framework instance. Note
that the "encoder/" prefix is not included in the path name of the returnmodule.

Client:

["module.encoders", "<token>"]

Server:

{ "modules" => [
"mipsbe/longxor",
"sparc/longxor_tag",
[…]
]

}

module.nops

Themodule.nops method returns a list of all loaded nopmodules in the framework instance. Note that the
"nop/" prefix is not included in the path name of the returnmodule.

Client:

["module.nops", "<token>"]

Server:

{ "modules" => [
"armle/simple",
"sparc/random",
[…]
]

}

Modules 28

module.info (String: ModuleType, String: ModuleName)

Themodule.info method returns a hash of detailed information about the specifiedmodule. The
ModuleType should be one "exploit", "auxiliary", "post", "payload", "encoder", and "nop". The
ModuleName can either includemodule type prefix ("exploit/") or not.

Client:

["module.info", "<token>", "ModuleType", "ModuleName"]

Server:

{
"name" => "SPARC NOP generator",
"description" => "SPARC NOP generator",
"license" => "Metasploit Framework License (BSD)",
"filepath" => "<msf>/modules/nops/sparc/random.rb",
"version" => "10394",
"rank" => 300,
"references" => [],
"authors" => ["vlad902 <vlad902@gmail.com>"]

}

module.options (String: ModuleType, String: ModuleName)

Themodule.options method returns a hash of datastore options for the specifiedmodule. TheModuleType
should be one "exploit", "auxiliary", "post", "payload", "encoder", and "nop". TheModuleName can either
includemodule type prefix ("exploit/") or not.

Client:

["module.options", "<token>", "ModuleType", "ModuleName"]

Server:

{
"SSL"=> {

"type" => "bool",
"required" => false,
"advanced" => true,
"evasion" => false,
"desc" => "Negotiate SSL for outgoing connections",
"default" => false
},

"SSLVersion" => {
"type" => "enum",
"required" => false,
"advanced" => true,

Modules 29

"evasion" => false,
"desc" => "Specify the version…",
"default" => "SSL3",
"enums" => ["SSL2", "SSL3", "TLS1"]
}

}

module.compatible_payloads (String: ModuleName)

Themodule.compatible_payloads method returns a list of payloads that are compatible with the exploit
module name specified.

Client:

["module.compatible_payloads", "<token>", "ModuleName"]

Server:

{
"payloads" => [
"generic/debug_trap",
"generic/shell_bind_tcp",
"generic/shell_reverse_tcp"
]
}

module.target_compatible_payloads (String: ModuleName, Integer: TargetIndex)

Themodule.target_compatible_payloads method is similar to themodule.compatible_payloads method in
that it returns a list of matching payloads, however, it restricts those payloads to those that will work for a
specific exploit target. For exploit modules that can attack multiple platforms and operating systems, this
is themethod used to obtain a list of available payloads after a target has been chosen.

Client:

["module.target_compatible_payloads", "<token>", "ModuleName", 1]

Server:

{
"payloads" => [
"generic/debug_trap",
"generic/shell_bind_tcp",
"generic/shell_reverse_tcp"
]

}

Modules 30

module.compatible_sessions (String: ModuleName }

Themodule.compatible_sessions method returns a list of payloads that are compatible with the post
module name specified.

Client:

["module.compatible_sessions", "<token>", "ModuleName"]

Server:

{ "sessions" => [
"1",
"2"
]

}

module.encode(String: Data, String: EncoderModule, Hash: Options)

Themodule.encodemethod provides a way to encode an arbitrary payload (specified as Data) with a
specific encoder and set of options. The available options include:

l format – This option can be used to specify an output format, such as "exe", "vbs", or "raw".

l badchars – This option can be used to specify a list of raw bytes to avoid in the encoding.

l platform – This option can be used to set the operating system platform of the encoder.

l arch – This option can be used to set the architecture of the encoder.

l ecount – This option specifies the number of encoding passes to be done.

For "exe" format, the following additional options are available:

l altexe – The name of a specific executable template file to use for the output file.

l exedir – The name of an alternate directory of templates to consult for the output file.

l inject – A boolean indicating whether to inject the payload as new thread.

Client:

["module.encode", "<token>", "Data", "EncoderModule", {
"Option1" => "Value1",
"Option2" => "Value2"
}

]

Server:

{ "encoded" => "<raw output data>" }

Modules 31

module.execute (String: ModuleType, String: ModuleName, Hash: Datastore)

Themodule.executemethod provides a way to launch an exploit, run an auxiliary module, trigger a post
module on a session, or generate a payload. TheModuleType should be one "exploit", "auxiliary", "post",
and "payload. TheModuleName can either includemodule type prefix ("exploit/") or not. The Datastore is
the full set of datastore options that should be applied to themodule before executing it.

In the case of exploits, auxiliary, or post modules, the server response will return the Job ID of the running
module:

Client:

["module.execute", "<token>", "ModuleType", "ModuleName", {
"RHOST" => "1.2.3.4",
"RPORT" => "80"
}

]

Server:

{ "job_id" => 1 }

In the case of payloadmodules, a number of additional options are parsed, including the datastore for the
payload itself. These options are:

l BadChars – The raw list of bytes that needed to be encoded out of the payload

l Format – The output format that the payload should be converted to ("exe", "ruby", "c")

l ForceEncoding – A boolean indicating whether encoding should be done even if bytes are OK

l Template – The path to a template file for EXE output

l Platform – The operating system platform for the encoder

l KeepTemplateWorking – A boolean indicating whether to inject a new thread or not

l NopSledSize – The size of the prefixedmandatory nop sled (default is 0)

l Iterations – The number of encoding rounds to go through

The response consists of the raw payload data:

Client:

["module.execute", "<token>", "ModuleType", "ModuleName", {
"LHOST" => "4.3.2.1",
"LPORT" => "4444"
}

]

Server:

Plugins 32

{ "payload" => "<raw payload data>" }

Plugins

The Plugin API provides the ability to load, unload, and list loaded plugins.

plugin.load (String: PluginName, Hash: Options)

The plugin.loadmethod will load the specified plugin in the framework instance. TheOptions parameter
can be used to specify initialization options to the plugin. The individual options are different for each
plugin. A failed load will cause this method to return a "result" value of "failure".

Client:

["plugin.load", "<token>", "PluginName", {
"Option1" => "Value1",
"Option2" => "Value2"
}

]

Server:

{ "result" => "success" }

plugin.unload (String: PluginName)

The plugin.unloadmethod will unload a previously loaded plugin by name. The name is not always
identical to the string used to load the plugin in the first place, so callers should check the output of
plugin.loaded when there is any confusion. A failed load will cause this method to return a "result" value of
"failure".

Client:

["plugin.unload", "<token>", "PluginName"]

Server:

{ "result" => "success" }

Sessions 33

plugin.loaded

The plugin.loadedmethod will enumerate all currently loaded plugins.

Client:

["plugin.loaded", "<token>"]

Server:

{ "plugins" => ["plugin1", "plugin2", "plugin3"] }

Sessions

The Sessions API is used to list, interact with, and terminate open sessions to compromised systems.
The Session ID returned by session.list is used to unique identify a given session. Note that the database
IDs used to identify sessions in theMetasploit Pro user interface are translated to a framework instance-
local Session ID for use by this API.

session.list

This method will list all active sessions in the framework instance.

Client:

["session.list", "<token>"]

Server:

{
"1" => {

'type' => "shell",
"tunnel_local" => "192.168.35.149:44444",
"tunnel_peer" => "192.168.35.149:43886",
"via_exploit" => "exploit/multi/handler",
"via_payload" => "payload/windows/shell_reverse_tcp",
"desc" => "Command shell",
"info" => "",
"workspace" => "Project1",
"target_host" => "",
"username" => "root",
"uuid" => "hjahs9kw",
"exploit_uuid" => "gcprpj2a",

Sessions 34

"routes" => []
}

}

session.stop (String: SessionID)

The session.stopmethod will terminate the session specified in the SessionID parameter.

Client:

["session.stop", "<token>", "SessionID"]

Server:

{ "result" => "success" }

session.shell_read (String: SessionID, OPTIONAL: Integer:ReadPointer)

The shell.readmethod provides the ability to read output from a shell session. As of version 3.7.0, shell
sessions also ring buffer their output, allowingmultiple callers to read from one session without losing
data. This is implemented through the optional ReadPointer parameter. If this parameter is not given (or
set to 0), the server will reply with all buffered data and a new ReadPointer (as the "seq" element of the
reply). If the caller passes this ReadPointer into subsequent calls to shell.read, only data since the
previous read will be returned. By continuing to track the ReadPointer returned by the last call and pass it
into the next call, multiple readers can all follow the output from a single session without conflict.

Client:

["session.shell_read", "<token>", "SessionID", "ReadPointer]

Server:

{
"seq" => "32",
"data" => "uid=0(root) gid=0(root)…"

}

session.shell_write (String: SessionID, String: Data)

The shell.write method provides the ability to write data into an active shell session.

Most sessions require a terminating newline before they will process a command.

Client:

Sessions 35

["session.shell_write", "<token>", "SessionID", "id\n"]

Server:

{ "write_count" => "3" }

session.meterpreter_write (String: SessionID, String: Data)

The session.meterpeter_write method provides the ability write commands into theMeterpreter Console.
This emulates how a user would interact with aMeterpreter session from theMetasploit Framework
Console. Note that multiple concurrent callers writing and reading to the sameMeterpreter session through
this method can lead to a conflict, where one caller gets the others output and vice versa. Concurrent
access to aMeterpreter session is best handled by running Post modules or Scripts. A newline does not
need to specified unless the console is current tied to an interactive channel, such as a sub-shell.

Client:

["session.meterpreter_write", "<token>", "SessionID", "ps"]

Server:

{ "result" => "success" }

session.meterpreter_read (String: SessionID)

The session.meterpreter_readmethod provides the ability to read pending output from aMeterpreter
session console. As noted in the session.meterpreter_write documentation, this method is problematic
when it comes to concurrent access by multiple callers and Post modules or Scripts should be used
instead.

Client:

["session.meterpreter_read", "<token>", "SessionID"]

Server:

{ "data" => "<raw console output>" }

session.meterpreter_run_single (String: SessionID, String: Command)

The session.meterpreter_run_single method provides the ability to run a single Meterpreter console
command. This method does not need be terminated by a newline. The advantage to session.meterpreter_

Sessions 36

run_single over session.meterpreter_write is that this method will always run theMeterpreter command,
even if the console tied to this sessions is interacting with a channel.

Client:

["session.meterpreter_run_single", "<token>", "SessionID", "ps"]

Server:

{ "result" => "success" }

session.meterpreter_script (String: SessionID, String: ScriptName)

The session.meterpreter_script method provides the ability to run aMeterpreter script on the specified
session. This method does not provide a way to specify arguments for a script, but the
session.metepreter_run_single method can handle this case.

Client:

["session.meterpreter_script","<token>","SessionID","scriptname"]

Server:

{"result"=>"success"}Server: { "result" => "success" }

session.meterpreter_session_detach (String: SessionID)

The session.meterpreter_session_detachmethod stops any current channel or sub-shell interaction taking
place by the console associated with the specifiedMeterpreter session. This simulates the console user
pressing the Control+Z hotkey.

Client:

["session.meterpreter_session_detach", "<token>", "SessionID"]

Server:

{ "result" => "success" }

session.meterpreter_session_kill (String: SessionID)

The session.meterpreter_session_kill method terminates the current channel or sub-shell that the console
associated with the specifiedMeterpreter session is interacting with. This simulates the console user

Sessions 37

pressing the Control+C hotkey.

Client:

["session.meterpreter_session_detach", "<token>", "SessionID"]

Server:

{ "result" => "success" }

session.meterpreter_tabs (String: SessionID, String: InputLine)

The session.meterpreter_tabs command simulates the user hitting the tab key within theMeterpreter
Console. This method will take a current line of input and return the tab completion options that would be
available within the interactive console. This allows an API caller to emulate tab completion through this
interface. For example, setting the InputLine to "hel" for a newly allocated console returns a single element
array with the option "help".

Client:

["session.meterpreter_tabs", "<token>", "SessionID", "InputLine"]

Server:

{ "tabs" => ["option1", "option2", "option3" }

session.compatible_modules (String: SessionID)

The session.compatible_modules method returns a list of Post modules that are compatible with the
specified session. This includes matchingMeterpreter Post modules toMeterpreter sessions and
enforcing platform and architecture restrictions.

Client:

["session.compatible_modules", "<token>", "SessionID"]

Server:

{ "modules" => ["multi/gather/env"] }

Sessions 38

session.shell_upgrade (String: SessionID, String: ConnectHost, String: ConnectPort)

The session.shell_upgrademethod will attempt to spawn a new Meterpreter session through an existing
Shell session. This requires that amulti/handler be running (windows/meterpreter/reverse_tcp) and that
the host and port of this handler is provided to this method.

Client:

["session.shell_upgrade", "<token>", "SessionID", "1.2.3.4", 4444]

Server:

{ "result" => "success" }

session.ring_clear (String: SessionID)

The session.ring_clear method will wipe out the ring buffer associated with a specific shell session. This
may be useful to reclaim memory for idle background sessions.

Client:

["session.ring_clear", "<token>", "SessionID"]

Server:

{ "result" => "success" }

session.ring_last (String: Session ID)

The session.ring_last method will return the last issued ReadPointer (sequence number) for the specified
Shell session.

Client:

["session.ring_last", "<token>", "SessionID"]

Server:

{ "seq" => 112 }

session.ring_put (String: SessionID, String: Data)

The session.ring_put method provides the ability to write data into an active shell session.

Sessions 39

Most sessions require a terminating newline before they will process a command.

Client:

["session.ring_put", "<token>", "SessionID", "id\n"]

Server:

{ "write_count" => "3" }

Pro API Methods Reference 40

Pro API Methods Reference

In addition to the standard API, Metasploit Pro users can use the API to access to the commercial feature
set. The Pro API methods can be used tomanage a remoteMetasploit Pro instance to do things like
automate exploitation and reporting. While the Pro API includes a number of high-level APIs, the standard
API methods are the best way tomanage low-level primitives, such as sessions. In some cases, there is
overlap between what a Pro API method provides and what can be found in the Standard API and the
comments listed for the Pro API will make it clear which use case a specific method is designed to solve.

Pro General API

The Pro General API methods provide access to product version information, active projects, and user
accounts.

pro.about

The pro.about method returns a hash containing basic information about the runningMetasploit Pro
instance.

Request Example:

["pro.about", "<token>"]

Response Example:

{"product" => "Metasploit Pro", "version" => "4.11.0" }

pro.workspaces

The pro.workspaces method returns a list of all activeMetasploit Pro projects. Although these are called
products in the user interface, the underlying object is referred to as a workspace, and the terms
workspace and project are used interchangeably throughout this guide.

Request Example:

["pro.workspaces", "<token>"]

Response Example:

ProGeneral API 41

{ "Project1" => {
"created_at" => 1303706869,
"updated_at" => 1303706869,
"name" => "Project1",
"boundary" => "192.168.0.0/24",
"description" => "This is the local office network",
"owner" => "admin",
"limit_to_network" => false
}

}

pro.projects

The pro.projects method is an alias for the pro.workspaces method.

pro.workspace_add (Hash:WorkspaceOptions)

The pro.workspace_addmethod adds a new workspace with the specified settings and returns a hash of
that contains information on the newly created workspace.

Request Example:

["pro.workspace_add", "<token>", { "name" => "Project1"]

Response Example:

{ "Project1" => {
"created_at" => 1303706869,
"updated_at" => 1303706869,
"name" => "Project1",
"boundary" => "192.168.0.0/24",
"description" => "This is the local office network",
"owner" => "admin",
"limit_to_network" => false
}

}

Hash keys that can be passed in to this method include:

l name: The unique name of the newly created workspace.

l boundary: The default network range for this project.

l description: A short amount of text describing this project.

l limit_to_network: A Boolean indicating whether to restrict operations to the boundary.

ProGeneral API 42

pro.project_add (Hash:WorkspaceOptions)

The pro.project_addmethod is an alias for the pro.workspace_addmethod.

pro.workspace_del (String:WorkspaceName)

The pro.workspace_del removes the workspace specified in theWorkspaceName parameter.

Request Example:

["pro.workspace_del", "<token>", "Project1"]

Response Example:

{ "result" => "success" }

pro.project_del (String:WorkspaceName)

The pro.project_del method is an alias for the pro.workspace_del method.

pro.users

The pro.users method returns a list of all configured user accounts in theMetasploit Pro instance.

Request Example:

["pro.users", "<token>"]

Response Example:

{ "users" => {
"admin" => {
"username" => "admin",
"admin" => true,
"fullname" => "Joe Admin",
"email" => "joe_admin@example.org",
"phone" => "1-555-555-1212",
"company" => "Giant Widgets, Inc."
}

}
}

Pro License API 43

Pro License API

The Pro License API provides methods for registering and activating theMetasploit Pro product.

pro.register (String: ProductKey)

The pro.register method accepts a product key as the only parameter, validates that the product key
matches the correct format, and saves the product key internally. The pro.activate methodmust be used
to fully activate the product. This method returns a hash indicating the result of the register call and the
current state of the product.

Request Example:

["pro.register", "<token>", "ProductKey"]

Response Example:

{
"result" => "success",
"product_key" => "XXXX-XXXX-XXXX-XXXX",
"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",
"product_type" => "Metasploit Pro",
"product_version" => "4.11.0",
"product_revision" => "1",
"registered" => true,
"activated" => false,
"expiration" => 0,
"person" => "",
"organization" => "",
"email" => "",
"users" => 1,
"hardware" => true

}

pro.activate (Hash: ActivationOptions)

The pro.activate method causes theMetasploit Pro installation to attempt an online activation with the
previously registered product key and the specified ActivationOptions. If a 'product_key' element is
provided in the ActivationOptions hash, this key will be registered prior to the activation process. In most
cases, an empty hash can be specified in place of the ActivationOptions. If theMetasploit Pro instance
does not have direct access to the internet, the ActivationOptions can be used to specify an internal HTTP
proxy server. Proxy options can be specified in the 'proxy_host', 'proxy_port', 'proxy_user', and 'proxy_
pass' elements of the ActivationOptions hash. Only standard HTTP proxies are supported. The response

Pro License API 44

to the activate call will either contain a hash of license information, as the pro.register method does, or a
hash containing a 'result' element with the value set to 'failure', and a second element, 'reason' indicating
the reason for this failure. Note that every product key can only be activated a limited number of times,
with the count determined by the license type. In the event that activation limit has been reached, Rapid7
Support must be contacted to reset the activation count.

Request Example:

["pro.activate", "<token>",
{
"proxy_host" => "1.2.3.4",
"proxy_port" => 80
}

]

Response Example:

{
"result" => "success",
"product_key" => "XXXX-XXXX-XXXX-XXXX",
"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",
"product_type" => "Metasploit Pro",
"product_version" => "4.11.0",
"product_revision" => "1",
"registered" => true,
"activated" => true,
"expiration" => 1325376000,
"person" => "Licensed Person",
"organization" => "Licensed Organization",
"email" => "bob_admin@example.org",
"users" => 2,
"hardware" => true

}

pro.activate_offline (String: ActivationFilePath)

The pro.activate_offlinemethod causes theMetasploit Pro installation to load a pre-generated offline
activation file from the specified local filesystem path. Offline activation files are reserved for customers
with network isolation requirements and are available through Rapid7 Support.

Request Example:

["pro.activate_offline", , "<token>", "/tmp/metasploit_pro_activation.zip"]

Response Example:

{
"result" => "success",
"product_key" => "XXXX-XXXX-XXXX-XXXX",

Pro License API 45

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",
"product_type" => "Metasploit Pro",
"product_version" => "4.11.0",
"product_revision" => "1",
"registered" => true,
"activated" => true,
"expiration" => 1325376000,
"person" => "Licensed Person",
"organization" => "Licensed Organization",
"email" => "bob_admin@example.org",
"users" => 2,
"hardware" => true

}

pro.license

The pro.licensemethod will return a hash indicating the current Metasploit Pro license.

Request Example:

["pro.license", "<token>"]

Response Example:

{
"result" => "success",
"product_key" => "XXXX-XXXX-XXXX-XXXX",
"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",
"product_type" => "Metasploit Pro",
"product_version" => "4.11.0",
"product_revision" => "1",
"registered" => true,
"activated" => true,
"expiration" => 1325376000,
"person" => "Licensed Person",
"organization" => "Licensed Organization",
"email" => "bob_admin@example.org",
"users" => 2,
"hardware" => true

}

pro.revert_license

The pro.revert_licensemethod attempts to switch to the last successfully activated product license before
the current one. Only one backup license copy is kept and this method does nothing if there is no backup
license available when it is called. The return value is identical to the pro.license call in that it provides the
newly chosen license information as a hash. This method is used to temporarily use a license that may

Pro Updates API 46

providemore users or other capabilities and then fallback to the original license when that temporary
license expires.

Request Example:

["pro.license", "<token>"]

Response Example:

{
"result" => "success",
"product_key" => "XXXX-XXXX-XXXX-XXXX",
"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",
"product_type" => "Metasploit Pro",
"product_version" => "4.11.0",
"product_revision" => "1",
"registered" => true,
"activated" => true,
"expiration" => 1325376000,
"person" => "Licensed Person",
"organization" => "Licensed Organization",
"email" => "bob_admin@example.org",
"users" => 5,
"hardware" => false

}

Pro Updates API

The Pro Updates API provides the ability to check for, download, and apply the latest Metasploit Pro
updates. This API also includes amethod for restarting theMetasploit Pro services.

pro.update_available (Hash:UpdateCheckOptions)

The pro.update_available method provides the ability to check for available updates to theMetasploit Pro
instance. The UpdateCheckOptions hash can either be empty or include the 'proxy_host', 'proxy_port',
'proxy_user', and 'proxy_pass' elements to use a HTTP proxy for the check. The return value includes a
hash that indicates whether an update is available, what the version number of this update is, and a
description of what the update contains. Note that the descriptionmay contain HTML formatting.

Request Example:

["pro.update_available", "<token>", { }]

Response Example:

Pro Updates API 47

{
"status" => "success",
"result" => "update",
"current" => "1",
"version" => "20120125000001",
"info" => "This updates adds new features and fixes…"

}

pro.update_install (Hash: InstallOptions)

The pro.update_install method provides the ability to install an update package by name, specified through
the 'version' element of the InstallOptions hash. The 'proxy_host', 'proxy_port', 'proxy_user', and 'proxy_
pass' elements can be supplied in this hash to indicate that a HTTP proxy should be used. This method
returns a hash indicating whether the update was started successfully and what the current status of the
installation is. The download and installation process is completed as a single step as the progress can be
tracked through calls to the pro.update_status method. Note that the pro.restart_servicemethodmust be
called to finalize the update.

Request Example:

["pro.update_install", "<token>", { "version" => "20120125000001" }]

Response Example:

{
"status" => "success",
"result" => "Downloading",
"error" => ""

}

pro.update_install_offline (String: UpdatePath)

The pro.update_install_offlinemethod provides the ability install an update package from a local
filesystem. Customers that require offline updates should contact Rapid7 Support to be notified of the
download location of each update package. The status of the offline package installation can bemonitored
by calling the pro.update_status method. Note that the pro.restart_servicemethodmust be called to
finalize the update.

Request Example:

["pro.update_install_offline", "<token>", "/tmp/metasploit_pro_update.zip"]

Response Example:

{
"status" => "success",

Pro Updates API 48

"result" => "Installing",
"error" => ""

}

pro.update_status

The pro.update_status method returns a hash indicating the current status of the update installation
process. If the update is still being retrieved from the server, the current progress of the download will be
returned in the 'download_total', 'download_done', and 'download_pcnt' elements.

Request Example:

["pro.update_status", "<token>"]

Response Example:

{
"status" => "success",
"result" => "Downloading",
"error" => "",
"download_total" => "1000000",
"download_done" => "100000",
"download_pcnt" => "10"

}

pro.update_stop

The pro.update_stopmethod forcibly stops any existing update process, whether it is downloading the
update package or installing the contents.

Request Example:

["pro.update_stop", "<token>"]

Response Example:

{ "status" => "success" }

pro.restart_service

The pro.restart_servicemethod causes theMetasploit Pro RPC Service (prosvc) and theMetasploit Pro
Web Service to restart. This is necessary to complete the installation of an update package.

Request Example:

Pro Task API 49

["pro.restart_service", "<token>"]

Response Example:

{ "status" => "success" }

Pro Task API

Metasploit Pro uses tasks tomanage background jobs initiated by the user through the web interface.
Scanning, exploiting, bruteforcing, importing, and reporting are all handled through tasks. The Pro task API
provides methods for enumerating active tasks, stopping tasks, and retrieving the raw log file for a given
task.

pro.task_list

The pro.task_list method returns a hash of active tasks.

Request Example:

["pro.task_list", "<token>"]

Response Example:

{ "108" =>
{
"status" => "running",
"error" => "",
"created_at" => 1306792667,
"progress" => 25,
"description" => "Launching",
"info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",
"workspace" => "Branch Office",
"username" => "admin",
"result" => "",
"path" => "tasks/task_pro.single_108.txt",
"size" => 425
}

}

pro.task_status (String:TaskID)

The pro.task_status method returns the current status of a given task.

Request Example:

Pro Task API 50

["pro.task_status", "<token>", "108"]

Response Example:

{ "108" =>
{
"status" => "running",
"error" => "",
"created_at" => 1306792667,
"progress" => 25,
"description" => "Launching",
"info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",
"workspace" => "Branch Office",
"username" => "admin",
"result" => "",
"path" => "tasks/task_pro.single_108.txt",
"size" => 425
}

}

pro.task_stop (String:TaskID)

The pro.task_stopmethod terminates the task specified in the task ID parameter.

Request Example:

["pro.task_status", "<token>", "108"]

Response Example:

{ "task" => "108", "status" => "stopped" }

pro.task_log (String: TaskID)

The pro.task_logmethod returns the status and log data for the task specified in the task ID parameter.

Request Example:

["pro.task_log", "<token>", "108"]

Response Example:

{
"status" => "running",
"error" => "",
"created_at" => 1306792667,
"progress" => 25,
"description" => "Launching",

Pro Feature API 51

"info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",
"workspace" => "Branch Office",
"username" => "admin",
"result" => "",
"path" => "tasks/task_pro.single_108.txt",
"size" => 425,
"log" => "<425 bytes of output data>"

}

pro.task_delete_log (String: TaskID)

The pro.task_delete_logmethod deletes the associated log file for a specific task.

Request Example:

["pro.task_delete_log", "<token>", "108"]

Response Example:

{ "status" => "succcess" }

Pro Feature API

The Pro Feature API includes methods that provide access tomany of the top-level features in the
Metasploit Pro user interface. Thesemethods include launching discovery scans, importing data from
other tools, launching automated exploits, running bruteforce attacks, and generating reports. Since these
methods are designed to expose all of the functionality available through the user interface, they take a
large number of parameters.

pro.start_discover (Hash:Config)

The pro.start_discover method is the backendmethod that drives the scan action within theMetasploit Pro
user interface. This action launches a discovery scan against a range of IP addresses, identifying active
hosts, open services, and extracting information from the discovered services. The resulting data is stored
in the backend database. The pro.start_discover method takes a large number of options in the form of a
single hash parameter and returns a task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

ips Yes ["192.168.0.0/24"] This option determines what IP addresses and IP

Pro Feature API 52

ranges to include in the scan. This option is an
array of IP addresses and/or IP ranges.

workspace Yes Project1
This option indicates the project name that this
scan should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin

This option specifies which Pro username this
scan task should be attributed to. If not specified,
the first user with administrative privileges is
used.

DS_BLACKLIST_
HOSTS

No 192.168.0.1
This option determines what addresses within the
ips range should be excluded from the scan.
Multiple entries should be separated by spaces.

DS_PORTSCAN_
SPEED

No Insane

This option should be one of Paranoid, Sneaky,
Polite, Normal, Aggressive or Insane. These
correspond to the common options in the Nmap
security scanner and progressively increase the
speed of the scan. Insane is actually a reasonable
setting for a local Ethernet network.

DS_PORTS_EXTRA No 1-65535

This option allows additional TCP ports to be
included in the scan. Ports are specified in Nmap
format (ranges separated by –'s and commas
between ranges).

DS_PORTS_
BLACKLIST

No 9100, 1723
This option defines a list of ports that should
always be excluded.

DS_PORTS_
CUSTOM

No 1-1024
This option overrides the built-in port list (derived
from the loaded exploit modules) and only scans
the ports listed.

DS_PORTSCAN_
TIMEOUT

No 300

This option sets themaximum amount of time, in
seconds, that the scanner should spend on a
single host. If you increase the range of ports to
scan with another option, this should also be
increased. 300 seconds (5minutes) is a
reasonable setting even for heavily filtered
networks.

DS_PORTSCAN_
SOURCE_PORT

No 53

This option configures the source port for the
scan. Setting this to 80, 53, or 20 can often
bypass poorly configured firewalls and access
lists.

DS_CustomNmap No -sF -O
This option can be used to completely override the
Nmap command line normally used by Pro and
replace it (excluding hosts and ports).

DS_UDP_PROBES No false
This option can be used to disable UDP service
probes by setting it to false (it is enabled
otherwise).

DS_FINGER_ No false This option can be used to disable the finger

Pro Feature API 53

USERS
service (79/tcp) automated username harvesting
that occurs by default when enabled.

DS_SNMP_SCAN No false

This option can be used to disable the SNMP
scanner that is normally included in the scan by
default. This scanner attempts to guess a small
number of common SNMP communities for each
targeted host.

DS_IDENTIFY_
SERVICES

No false

This option can be used to disable the service
identification phase that is normally triggered
when one or services are not identified in the first
pass.

DS_SMBUser No Administrator
This option can be used to extract additional
information from SMB services if a valid
username and password is supplied.

DS_SMBPass No S3cr3t
This option defines the password that
corresponds to the DS_SMBUser option.

DS_SMBDomain No CORP
This option defines the domain that corresponds
to the DS_SMBUser option.

DS_DRY_RUN No true
This option, when set to true, will cause the task
to show what it would do, but not actually send
any network traffic.

DS_SINGLE_SCAN No true

This option, when set to true, will scan each host
sequentially instead of multiple hosts at once.
Useful for reducing packet loss on especially poor
networks.

DS_FAST_DETECT No true
This option, when set to true, will limit the scan to
a small set of TCP ports.

A sample request to use the default settings to scan 192.168.0.0/24 would look like:

["pro.start_discover", "<token>",
{
"ips" => ["192.168.0.0/24"],
"workspace" => "Project1"
}

]

If we change the same request to scan all 65535 TCP ports, it would look like:

["pro.start_discover", "<token>",
{
"ips" => ["192.168.0.0/24"],
"workspace" => "Project1",
"DS_PORTS_CUSTOM" => "1-65535"
}

]

Response Example:

Pro Feature API 54

{ "task_id" => "109" }

pro.start_import (Hash:Config)

The pro.start_import method is what drives the import action within theMetasploit Pro user interface. This
method assumes that a file is already on the local disk (relative to theMetasploit Pro system) or that a
Nexpose Console has been configured with one or more active sites. To import arbitrary data without
having to upload the file to the server first, please see the pro.import_datamethod instead. The pro.start_
import method takes a large number of options in the form of a single hash parameter and returns a task ID
that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

DS_PATH No /tmp/nexpose.xml

This option specifies the server-local file path to
import. If you are calling this API from a remote
system, it makes more sense to call the
pro.import_data API instead.

DS_BLACKLIST_
HOSTS

No 192.168.0.1
This option determines what addresses should be
excluded from the import. Multiple entries should
be separated by spaces.

DS_PRESERVE_
HOSTS

No true
This option can be used to prevent modifications
to existing hosts during an import.

DS_REMOVE_FILE No true
This option tells the service to delete the file
specified as DS_PATH after importing it.

DS_ImportTags No false
This option indicates whether to import tags as
well as host data when processing aMetasploit
Pro export file.

DS_NEXPOSE_
CONSOLE

No EnterpriseScanner

This option, when combined with the DS_
NEXPOSE_SITE parameter, can be used to
import data directly from a per-configured
Nexpose Console. Leave this blank to import from
a file path.

DS_NEXPOSE_
SITE

No Finance

This option, when combined with the DS_
NEXPOSE_CONSOLE parameter, can be used
to import data directly from an existing Nexpose
site. Leave this blank to import from a file path.

Pro Feature API 55

A sample request to import a Nexpose Export XMLwould look like:

Request Example:

["pro.start_import", "<token>",
{
"workspace" => "Project1",
"DS_PATH" => "/tmp/nexpose.xml"
}

]

Response Example:

{ "task_id" => "109" }

pro.start_import_creds (Hash:Config)

The pro.start_import_creds method is used to import credentials (users, passwords, hashes, and keys).
This method assumes that a file is already on the local disk (relative to theMetasploit Pro system. The
pro.start_import_creds method takes a large number of options in the form of a single hash parameter and
returns a task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

DS_IMPORT_PATH No /tmp/wordlist.txt
This option specifies the server-local file path to
import.

DS_FTYPE No pass
This option determines tells the service that kind
of import this is. It should be one of "userpass",
"user", "pass", pwdump", or "ssh_keys".

DS_NAME No
common_
passwords

This option indicates a unique name of this
imported data set.

DS_DESC No
Common
passwords

This option provides a user-visible description of
this imported data

DS_ORIG_FILE_
NAME

No my_passwords.txt
This option indicates the original file name of the
credential data.

DS_REMOVE_FILE No true
This option indicates whether the service should
delete the local file after importing it.

Pro Feature API 56

Request Example:

["pro.start_import_creds", "<token>",
{
"workspace" => "Project1",
"DS_IMPORT_PATH" => "/tmp/pwdump.txt",
"DS_FTYPE" => "pwdump",
"DS_NAME" => "domain_dump",
"DS_DESC" => "Password hashes from the DC",
"DS_REMOVE_FILE" => false
}

]

Response Example:

{ "task_id" => "109" }

pro.start_nexpose (Hash:Config)

The pro.start_nexposemethod is used to launch Nexpose scans directly through theMetasploit Pro
service. The pro.start_nexposemethod takes a large number of options in the form of a single hash
parameter and returns a task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

DS_WHITELIST_
HOSTS

Yes 192.168.0.0/24
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

DS_BLACKLIST_
HOSTS

No 192.168.0.3
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

DS_NEXPOSE_
HOST

No 127.0.0.1
This option specifies the list of addresses and
network ranges to scan.

DS_NEXPOSE_
PORT

No 3780
This option specifies the port of the Nexpose
Console.

DS_NEXPOSE_
USER

No nxadmin
This option specifies a valid username for the
Nexpose Console.

Pro Feature API 57

nexpose_pass No S3cr3t
This option specifies the password for the user
account. It uses a different syntax to prevent the
password from being logged in the Event table.

DS_SCAN_
TEMPLATE

No pentest-audit

The option specifies the scan template to use.
The common templates include: pentest-audit full-
audit, exhaustive-audit, discovery, aggressive-
discovery, and dos-audit.

Request Example:

The following shows an example of a request to start a new Nexpose scan:

["pro.start_nexpose", "<token>",
{
"workspace" => "Project1",
"DS_WHITELIST_HOSTS" => "192.168.0.0/24",
"DS_NEXPOSE_HOST" => "127.0.0.1",
"DS_NEXPOSE_PORT" => 3780,
"DS_NEXPOSE_USER" => "nxadmin",
"nexpose_pass" => "s3cr3t",
"DS_SCAN_TEMPLATE" => "pentest-audit"
}

]

Response Example:

{ "task_id" => "109" }

pro.start_bruteforce(Hash:Config)

The pro.start_bruteforcemethod is used to launch a new Bruteforce task. The pro.start_bruteforcemethod
takes a large number of options in the form of a single hash parameter and returns a task ID that can be
monitored using the Pro task API. The bruteforce task requires hosts and services to be present first via
scan, import, or Nexpose.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1

This option indicates the project name
that this import should be part of. This
correlates to the full name of the project
as listed in the user interface.

username No admin

This option specifies which Pro username
this task should be attributed to. If not
specified, the first user with
administrative privileges is used.

Pro Feature API 58

DS_WHITELIST_HOSTS Yes 192.168.0.0/24
This option specifies the list of addresses
and network ranges to test.

DS_BLACKLIST_HOSTS No 192.168.0.3
This option specifies the list of addresses
and network ranges to exclude from the
target range.

DS_STOP_ON_SUCCESS Yes true
This option indicates whether the
bruteforce attack should continue testing
a service after cracking the first account.

DS_VERBOSE No true
This option indicates how much
diagnostic information is shown during
bruteforce.

DS_INCLUDE_KNOWN Yes true
This option indicates whether the
bruteforce attack should use credentials
that were previously found.

DS_DRY_RUN No true

This option indicates whether to skip the
bruteforce attack and just show what
usernames and passwords would have
been tested.

DS_BRUTEFORCE_SCOPE Yes normal

This option indicates what bruteforce
mode to operate in. This is one of the
following settings: quick, defaults,
normal, deep, known, imported, or 50k.

DS_BRUTEFORCE_SPEED Yes turbo

This option specifies how fast to conduct
the bruteforce attack. This is one of the
following settings: Glacial, Slow,
Stealthy, Normal, Fast, or Turbo.

DS_BRUTEFORCE_
SERVICES

Yes SSH

This option specifies what protocols to
test. Multiple protocols should be
separated by spaces. Available protocols
include: SMB, Postgres, DB2, MySQL,
MSSQL, Oracle, HTTP, HTTPS, SSH,
Telnet, FTP, EXEC, LOGIN, SHELL,
VNC, and SNMP.

DS_BRUTEFORCE_
GETSESSION

Yes true
This option specifies whether to use
cracked accounts to gain access to the
tested systems.

DS_QUICKMODE_CREDS No
Username
Password\n

This option specifies additional
credentials to use as part of the
bruteforce attack. The syntax is
"username" followed by a space,
following by the "password", and a new
line "\n" for each credential.

DS_PAYLOAD_METHOD No auto
This option determines what connection
method to use when opening sessions, it
can be one of auto, reverse, or bind.

Pro Feature API 59

DS_PAYLOAD_TYPE No meterpreter
This option determines whether to prefer
meterpreter or shell session types.

DS_PAYLOAD_PORTS No 4000-5000
This option specifies the port range to use
for bind and reverse connections.

DS_SMB_DOMAINS No Domain1
This option specifies a list of domains,
separated by spaces, to use when brute
forcing protocols that speak NTLM.

DS_PRESERVE_DOMAINS No true

This option specifies whether to use the
original domain namewith each
username and password previously
identified.

DS_CRED_FILE_IDS No 34

This option specifies what imported
credential files to include in this
bruteforce task. This requires knowledge
of the imported credential file IDs.

DS_
MAXGUESSESPERSERVICE

No 100
This option specifies themaximum
number of authentication attempts per
service, it defaults to 0 which is unlimited.

DS_
MAXMINUTESPERSERVICE

No 60

This option specifies themaximum
amount of time inminutes to spend on
each service, it defaults to 0 which is
unlimited.

DS_
MAXGUESSESPERUSER

No 3

This option specifies themaximum
number of guesses to try for each unique
user account, it defaults to 0 which is
unlimited.

DS_MAXMINUTESOVERALL No 30

This option specifies themaximum
amount of time to run for the entire
bruteforce task, it defaults to 0 which is
unlimited.

DS_MAXGUESSESOVERALL No 1000
This option specifies themaximum
number of guesses to try overall, it
defaults to 0 which is unlimited.

DS_BRUTEFORCE_SKIP_
BLANK_PASSWORDS

No true
This option specifies whether to skip
blank passwords entirely, it defaults to
false.

DS_BRUTEFORCE_SKIP_
MACHINE_NAMES

No true
This option specifies whether to skip
machine names as a password seed
source for the wordlist, it defaults to false.

DS_BRUTEFORCE_SKIP_
BUILTIN_WINDOWS_
ACCOUNTS

No true

This option specifies whether to skip
builtinWindows accounts that typically
do not have weak passwords (service
accounts).

DS_BRUTEFORCE_SKIP_ No true This options specifies whether to skip

Pro Feature API 60

BLANK_BUILTIN_UNIX_
ACCOUNTS

built-in Unix accounts that typically do
have weak passwords (service
accounts).

DS_BRUTEFORCE_
RECOMBINE_CREDS

No true

This option specifies whether to
recombine known, imported, and
additional credentials to create the
wordlists.

DS_MSSQL_WINDOWS_
AUTH

No true
This option indicates that MSSQLServer
authentication should use NTLM instead
of Standardmode. This defaults to false.

A sample request to start a new Bruteforce task:

Request Example:

["pro.start_bruteforce", "<token>",
{
"workspace" => "Project1",
"DS_WHITELIST_HOSTS" => "192.168.0.0/24",
"DS_BRUTEFORCE_SCOPE" => "defaults",
"DS_BRUTEFORCE_SERVICES" => "SSH HTTP",
"DS_BRUTEFORCE_SPEED" => "TURBO",
"DS_INCLUDE_KNOWN" => normal,
"DS_BRUTEFORCE_GETSESSION" => true
}

]

Response Example:

{ "task_id" => "109" }

pro.start_exploit (Hash:Config)

The pro.start_exploit method is what drives the exploit action within theMetasploit Pro user interface. The
pro.start_exploit method takes a large number of options in the form of a single hash parameter and returns
a task ID that can bemonitored using the Pro task API. The exploit action requires hosts, services, and
optionally vulnerabilities to be present before it can be used. This can be accomplished using the scan,
import, and Nexpose actions first.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1

This option indicates the project name
that this import should be part of. This
correlates to the full name of the project
as listed in the user interface.

username No admin This option specifies which Pro

Pro Feature API 61

username this task should be attributed
to. If not specified, the first user with
administrative privileges is used.

DS_WHITELIST_
HOSTS

Yes 192.168.0.0/24

This option indicates the project name
that this import should be part of. This
correlates to the full name of the project
as listed in the user interface.

DS_BLACKLIST_
HOSTS

No 192.168.0.3

This option specifies which Pro
username this task should be attributed
to. If not specified, the first user with
administrative privileges is used.

DS_WHITELIST_
PORTS

No 1-1000
This option specifies what ports are
allowed during the exploitation task. This
defaults to 1-65535 (all ports).

DS_BLACKLIST_
PORTS

No 80,443

This option determines what addresses
should be excluded from the test.
Multiple entries should be separated by
spaces. This option specifies a list of
ports to avoid during the exploitation
task.

DS_MinimumRank Yes great

This option specifies theminimum
reliability level of exploits to include the
exploitation task. This is one of the
following settings, in order of increasing
liability: low, average, normal, good,
great, or excellent. This option indicates
how many exploits to run in parallel. The
default is 5 and a reasonablemaximum
is 10 due to how resources are allocated.
This option sets themaximum amount
of time any individual exploit can run.
Setting this below 2minutes can prevent
some exploits from working. This option
determines whether to attempt to avoid
exploiting systems that already have an
active session. The default is true. This
option specifies whether to avoid running
exploits against systems that are known
to fall over during common testing. This
is based on an internal blacklist and
results in printers andmany network
devices being skipped automatically by
the exploit engine. This setting defaults
to true. This option instructs the exploit
engine to useOS information when
matching exploits to hosts. Exploits will
only be skipped when the confidence of
the OS signature is high. The default for

Pro Feature API 62

this option is true.

DS_EXPLOIT_
SPEED

Yes 5

This option indicates how many exploits
to run in parallel. The default is 5 and a
reasonablemaximum is 10 due to how
resources are allocated.

DS_EXPLOIT_
TIMEOUT

No 5

This option sets themaximum amount of
time any individual exploit can run.
Setting this below 2minutes can prevent
some exploits from working.

DS_LimitSessions No false

This option determines whether to
attempt to avoid exploiting systems that
already have an active session. The
default is true.

DS_
IgnoreFragileDevices

No false

This option specifies whether to avoid
running exploits against systems that
are known to fall over during common
testing. This is based on an internal
blacklist and results in printers andmany
network devices being skipped
automatically by the exploit engine. This
setting defaults to true.

DS_FilterByOS No false

This option instructs the exploit engine to
useOS information whenmatching
exploits to hosts. Exploits will only be
skipped when the confidence of the OS
signature is high. The default for this
option is true.

DS_OnlyMatch No false

This option, when set to true,
instructions to exploit engine tomatch
exploits but not actually run them. The
default setting is false.

DS_MATCH_
VULNS

Yes false
This option instructs the exploit engine to
match exploits based on vulnerability
references. This setting defaults to true.

DS_MATCH_
PORTS

Yes false
This option instructs the exploit engine to
match exploits based on open services.
This setting defaults to true.

DS_PAYLOAD_
METHOD

No auto
This option determines what connection
method to use when opening sessions, it
can be one of auto, reverse, or bind.

DS_PAYLOAD_
TYPE

No meterpreter
This option determines whether to prefer
meterpreter or shell session types.

DS_PAYLOAD_
PORTS

No 4000-5000
This option specifies the port range to
use for bind and reverse connections.

DS_EVASION_ No 1 This option specifies a transport-level

Pro Feature API 63

LEVEL_TCP evasion level between 0 and 3.

DS_EVASION_
LEVEL_APP

No 1
This option specifies an application-level
evasion level between 0 and 3.

DS_ModuleFilter No exploit/windows/smb/psexec

This option specifies a whitelist of
module names that are allowed to be run,
separated by commas. By default all
modules are considered that meet the
other criteria.

A sample request to run exploits across a network range:

Request Example:

["pro.start_exploit", "<token>",
{
"workspace" => "Project1",
"DS_WHITELIST_HOSTS" => "192.168.0.0/24",
"DS_MinimumRank" => "great",
"DS_EXPLOIT_SPEED" => 5,
"DS_EXPLOIT_TIMEOUT" => 2,
"DS_LimitSessions" => true,
"DS_MATCH_VULNS" => true,
"DS_MATCH_PORTS" => true
}

]

Response Example:

{ "task_id" => "109" }

pro.start_cleanup (Hash:Config)

The pro.start_cleanupmethod is what drives the Cleanup action within theMetasploit Pro user interface.
The pro.start_cleanupmethod takes a number of options in the form of a single hash parameter and returns
a task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

Pro Feature API 64

DS_SESSIONS Yes 1 2 3
This option specifies a list of session IDs to
close. These are RPC service session IDs.

DS_DBSESSIONS No 1001 1002
This option specifies a list of session IDs by their
database identifiers.

Request Example:

["pro.start_cleanup", "<token>",
{
"workspace" => "Project1",
"DS_SESSIONS" => "100 101 102",
}

]

Response Example:

{ "task_id" => "109" }

pro.start_collect (Hash:Config)

The pro.start_collect method is what drives the Collect action within theMetasploit Pro user interface. The
pro.start_collect method takes a number of options in the form of a single Response: parameter and
returns a task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Description

workspace Yes Project1
This option indicates the project name that this
import should be part of. This correlates to the full
name of the project as listed in the user interface.

username No admin
This option specifies which Pro username this
task should be attributed to. If not specified, the
first user with administrative privileges is used.

DS_SESSIONS Yes 1 2 3
This option specifies a list of session IDs to
close. These are RPC service session IDs.

DS_COLLECT_
SYSINFO

Yes true
This option indicates whether basic system
information should be acquired.

DS_COLLECT_
PASSWD

Yes true
This option indicates whether password and
hashes should be acquired.

DS_COLLECT_
SCREENSHOTS

Yes true
This option indicates whether screenshots should
be taken.

DS_COLLECT_SSH Yes true
This option indicates whether ssh key information
should be acquired.

Pro Feature API 65

DS_COLLECT_
FILES

Yes true
This option indicates whether specific files
matching a pattern should be acquired.

DS_COLLECT_
FILES_PATTERN

No *.doc
This option sets the file pattern to automatically
download.

DS_COLLECT_
FILES_COUNT

No 100
This option sets themaximum number of files to
download per session.

DS_COLLECT_
FILES_SIZE

No 40
This option sets themaximum file size to
download per file, in kilobytes.

Request Example:

["pro.start_collect", "<token>",
{
"workspace" => "Project1",
"DS_SESSIONS" => "100 101 102",
"DS_COLLECT_SYSINFO" => true,
"DS_COLLECT_PASSWD" => true,
"DS_COLLECT_SCREENSHOTS" => true,
"DS_COLLECT_SSH" => true,
"DS_COLLECT_FILES" => false
}

]

Response Example:

{ "task_id" => "109" }

pro.start_report

The pro.start_report method drives the report actions within theMetasploit Pro user interface. The
pro.start_report method takes a number of options in the form of a single hash parameter and returns a
task ID that can bemonitored using the Pro task API.

The individual options within the hash are defined in the table below.

Option Required Example Type Description

workspace_name Yes Project1 String
The name of the workspace
that you want to use to gather
data for the report.

name Yes reportABC String
The name the report will be
saved as.

report_type Yes audit String

The type of report you want to
generate. The report_type
can be activity, audit,
credentials, collected_

Pro Feature API 66

evidence, compromised_
hosts, custom, fisma, mm_
auth, mm_pnd, mm_
segment, pci, services,
social_engineering, or
webapp_assessment.

report_template Yes /path/to/custom.jrxml String

The template used for custom
reports. To specify a
template, enter the full file
path to the custom Jasper
JRXML template.

Do not use this field unless
the report_type is set to
'custom'.

created_by: Yes admin String
The username to which the
report should be attributed.

file_formats Yes pdf Array

The file formats you want
generate for the report.
Available file formats include
PDF, HTML, RTF, XML, and
Word; however, the file
formats that are available
vary for each report type.

The Activity, Web App
Assessment, FISMA, and
PCI reports do not include the
Word format.

Only the PCI and
FISMA reports support the
XML format.

email_recipients No
joe@mail.com,
jon@mail.com

String

The addresses to which the
report should be emailed.
Addresses can be separated
with comma, semicolon,
newlines, or spaces.

mask_credentials No true Boolean

Enables or disables the
masking of credentials in a
report. Set this option to true
or false.

included_addresses No 192.168.1.0/24 String
Includes the specified hosts
in the report.

excluded_addresses No 192.168.1.1 String
Excludes the specified hosts
from the report.

Pro Feature API 67

logo_path No String

Adds a custom logo to the
report's cover page.

Youmust specify the full path
to the image. The imagemust
have agif, png, jpg, or jpeg file
type.

se_campaign_id No 1 Integer

The ID of the social
engineering campaign you
want to use to gather data for
the report.

Only use this field for Social
Engineering reports.

sections No
cover, project_
summary, task_
details

Array

Identifies the sections you
want to include in the report.
Only the specified sections
will be included. Otherwise, if
you do not specify this option,
all sections will be included.
To see the section names for
a report, use the pro.list_
report_types method.

usernames_reported No admin1, admin 2 String

Includes a list of active users
in the Executive summary
section of the report. You
must provide a comma
separated list of user names.

Request Example:

["pro.report_start", "<token>",
{
workspace: workspace_name,
name: "default_#{Time.now.to_i}",
report_type: :audit,
created_by: 'whoareyou',
file_formats: [:pdf]
}

]

pro.report_list

The pro.report_list method displays all reports that have been generated in the specified workspace.

Pro Feature API 68

pro.list_report_types

The pro.list_report_types method displays all the report types that can be generated in a workspace.

pro.report_download

The pro.report_downloadmethod downloads the specified report and its artifacts.

pro.report_artifact_download

The pro.report_artifact_downloadmethod downloads the specified report artifact.

pro.start_export

The pro.start_export method drives the export actions within theMetasploit Pro user interface.

The individual options within the hash are defined in the table below.

Option Required Example Type Description

workspace_name Yes project1 String
The name of the workspace
that you want to export data
from.

export_type Yes

created_by: Yes admin String
The username to which the
export should be attributed.

name No reportABC String
The name the export file will be
saved as.

mask_credentials No true Boolean

Enables or disables the
masking of credentials in an
export. Set this option to true or
false.

included_addresses No 192.168.1.0/24 String
Includes the specified hosts in
the export.

excluded_addresses No 192.168.1.1 String
Excludes the specified hosts
from the export.

Pro Feature API 69

pro.export_list

The pro.export_list method displays all exports that have been generated in the specified workspace.

pro.export_download

The pro.export_downloadmethod downloads the specified export file.

pro.start_webscan (Hash:Config)

The pro.start_webscanmethod is what drives theWebScan action within theMetasploit Pro user
interface. The pro.start_webscanmethod takes a large number of options in the form of a single
Response: parameter and returns a task ID that can bemonitored using the Pro task API. The individual
options within the hash are defined in the table below.

A sample request to run exploits across a network range:

Request Example:

["pro.start_webscan", "<token>",
{
"workspace" => "Project1",
"DS_URLS" => "http://www.example.org/",
"DS_MAX_PAGES" => 1000,
"DS_MAX_MINUTES" => 5,
"DS_MAX_THREADS" => 2
}

]

Response Example:

{ "task_id" => "109" }

pro.start_webaudit (Hash:Config)

The pro.start_webaudit method is what drives theWebAudit action within theMetasploit Pro user
interface. The pro.start_webaudit method takes a large number of options in the form of a single
Response: parameter and returns a task ID that can bemonitored using the Pro task API. TheWebAudit
action requires one or more existing forms to have been identified by theWebScan action or an import from
another data source.

The individual options within the hash are defined in the table below.

Pro Feature API 70

A sample request to run exploits across a network range:

Request Example:

["pro.start_webaudit", "<token>",
{
"workspace" => "Project1",
"DS_URLS" => "http://www.example.org/login.aspx",
"DS_MAX_REQUESTS" => 1000,
"DS_MAX_MINUTES" => 2,
"DS_MAX_THREADS" => 1,
"DS_MAX_INSTANCES" => 10
}

]

Response Example:

{ "task_id" => "109" }

pro.start_websploit (Hash:Config)

The pro.start_websploit method is what drives theWebSploitt action within theMetasploit Pro user
interface. The pro.start_websploit method takes a large number of options in the form of a single
Response: parameter and returns a task ID that can bemonitored using the Pro task API. TheWebSploit
action requires one or more existing vulnerabilities to have been identified by WebAudit or imported from
another data source.

The individual options within the hash are defined in the table below.

A sample request to run exploits across a network range:

Request Example:

["pro.start_websploit", "<token>",
{
"workspace" => "Project1",
"DS_VULNERABILITIES" => "100 101 102",
}

]

Response Example:

{ "task_id" => "109" }

Pro Import API 71

Pro Import API

pro.import_data (String:Workspace, BinaryString:Data, Hash:Options)

The pro.import_datamethod starts a new import task with the supplied data.

Request Example:

["pro.import_data", "<token>", "Project1", "<DATA>",
{
'blacklist_hosts' => '',
'preserve_hosts' => false

}

Response Example:

{ "task_id" => "109" }

pro.import_file (String:Workspace, String:Path, Hash:Options)

The pro.import_file method starts a new import task with the supplied server-local path.

Request Example:

["pro.import_file", "<token>", "Project1", "/home/data/report.xml",
{
'blacklist_hosts' => '',
'preserve_hosts' => false
}

]

Response Example:

{ "task_id" => "109" }

pro.validate_import_file (String:Path)

The pro.validate_import_file method validates a file on disk to verify that it is a support data format. This
method is non-standard in that it only returns a true or false value.

Request Example:

["pro.import_file", "<token>", "Project1", "/home/data/report.xml",
{

Pro Loot API 72

'blacklist_hosts' => '',
'preserve_hosts' => false
}

]

Response Example:

true

Pro Loot API

pro.loot_download (Integer:LootID)

The pro.loot_downloadmethod downloads the file associated with loot record, by unique ID

Request Example:

["pro.loot_download", "<token>", 99]

Response Example:

{ "data" => "<BinaryData>" }

pro.loot_list (String:WorkspaceName)

The pro.loot_downloadmethod returns a list of available loot records in a workspace

Request Example:

["pro.loot_list", "<token>", "Project1"]

Response Example:

{
"900" => {

'workspace' => "Project1",
'host' => "1.2.3.4",
'service' => 80,
'proto' => 'tcp',
'ltype' => 'screenshot',
'ctype' => 'image/jpeg',
'created_at' => <Unix Timestamp Integer>,
'updated_at' => <Unix Timestamp Integer>,
'name' => 'desktop.jpg',
'info' => 'User desktop screenshot',
'path' => '/opt/metasploit/loot/wspace_1_xxxxx.jpg',

ProModule API 73

'size' => 40945
}

}

Pro Module API

pro.module_search (String:SearchQuery)

The pro.module_searchmethod scans themodule database and returns any entries matching the
specified search query.

Request Example:

["pro.module_search", "<token>", "dcom"]

Response Example:

{ "matches"=>
{"exploit/windows/dcerpc/ms03_026_dcom"=>
{"type" => "exploit",

"name" => "Microsoft RPC DCOM Interface Overflow",
"rank" => 500,
"description" => "Long description…",
"license" => "Metasploit Framework License (BSD)",
"filepath" => "[..]/windows/dcerpc/ms03_026_dcom.rb",
"version" => "11545",
"arch" => [],
"platform" => [],
"references" =>
[["CVE", "2003-0352"],
["OSVDB", "2100"],
["MSB", "MS03-026"],
["BID", "8205"]],
"authors" =>
["hdm <hdm[at]metasploit.com>",
"spoonm <spoonm@no$email.com>",
"cazz <bmc[at]shmoo.com>"],
"privileged" => true,
"disclosure_date" => 1058313600,
"targets" => {0=>"Windows NT SP3-6a/2000/XP/2003 Universal"},
"default_target" =>"0",
"stance" => "aggressive"}, …
}

}
}

ProModule API 74

pro.module_validate (String:ModuleName, Hash:ModuleOptions)

The pro.module_validatemethod is used to determine whether a set of options satisfies the requirements
of a givenmodule.

Request Example:

["pro.module_validate", "<token>",
"exploit/windows/smb/psexec", {
"RHOST" => "1.2.3.4"
}

]

Response Example:

{ "result" => "success" }

Invalid options would result in the following:

Response Example:

{
"result" => "failure",
"error" => "The following options failed to validate: RHOST."
}

pro.modules (String:ModuleType)

The pro.modules method returns the full set of modules for a given type

Request Example:

["pro.modules", "<token>", "post"]

Response Example:

{"modules" =>
{ "post/linux/gather/checkvm" =>

{"type" => "post",
"name" => "Linux Gather Virtual Environment Detection",
"rank" => 300,
"description" => "Long description…",
"license" => "Metasploit Framework License (BSD)",
"filepath" => "[…]post/linux/gather/checkvm.rb",
"version" => "13173",
"arch" => [],
"platform" => ["Msf::Module::Platform::Linux"],
"references" => [],
"authors" => ["Carlos Perez <carlos_perez[at]darkoperator.com>"],

ProModule API 75

"privileged" => false}, …
}

}
}

Sample Usage 76

Sample Usage

The following scripts provide examples of how you can use the RPC API to perform common tasks.
These examples can be viewed in metasploit/apps/pro/api-example.

Adding a Workspace

#
NOTE: Workspace and Project are the same thing.
#
require_relative 'metasploit_rpc_client'
workspace_attrs = {

name: "FooCorp Pentest",
limit_to_network: true,
boundary: "10.2.3.1-10.2.3.24",
description: "A test of FooCorp's mission-critical internal Quake LAN."

}

Setup stuff from CLI
api_token = ARGV[0]
host = ARGV[1]

Make the client - set ssl to true in install environments
client = MetasploitRPCClient.new(host:host, token:api_token, ssl:false, port:50505)
client.call "pro.workspace_add", workspace_attrs

Listing, Downloading, and Generating a Report

Examples of report listing, download, and generation via RPC API.
#
Usage:
ruby report_api_test.rb <SERVICE KEY> <MSPro instance> '<WorkspaceName>'
#
Service key: Generate an API token from Global Settings, requires
Pro licensed instance.
MSPro instance: 127.0.0.1 if running locally
#
#

require_relative 'metasploit_rpc_client'

Importing Data 77

Setup stuff from CLI
api_token = ARGV[0]
host = ARGV[1]
workspace_name = ARGV[2]
Make the client
client = MetasploitRPCClient.new(host:host, token:api_token, ssl:false, port:50505)

Reports
List report types
type_list = client.call('pro.list_report_types')
puts "Allowed Report types: \n#{type_list}"

List current reports
#report_list = client.call('pro.report_list', workspace_name)
#puts "\n\nExisting Reports: #{report_list}\n"

Download report artifact
#report_artifact_id = 1
#artifact = client.call('pro.report_artifact_download', report_artifact_id)
#tmp_path = "/tmp/report_#{report_artifact_id}#{File.extname(artifact['file_path'])}"
#File.open(tmp_path, 'w') {|c| c.write artifact['data']}
#puts "Wrote report artifact #{report_artifact_id} to #{tmp_path}"

Create a report
#report_hash = {workspace: workspace_name,
name: "SuperTest_#{Time.now.to_i}",
report_type: :audit,
#se_campaign_id: 1,
created_by: 'whoareyou',
file_formats: [:pdf]
#}
#report_creation = client.call('pro.start_report', report_hash)
#puts "\n\nCreated report: \n#{report_creation}"

Download report and child artifacts
#report_id = 1
#report = client.call('pro.report_download', report_id)
#report['report_artifacts'].each_with_index do |a, i|
tmp_path = "/tmp/report_test_#{i}_#{Time.now.to_i}#{File.extname(a['file_path'])}"
File.open(tmp_path, 'w') {|c| c.write a['data']}
puts "Wrote report artifact #{report_id} to #{tmp_path}"
#end

Importing Data

#
Example of data import via the RPC API.
#
Usage:
ruby import_api_test.rb <Service key> <MSPro instance> \

Exporting Data 78

'<Project name>' \
'<Full path to import file>'
#
Service key: Generate an API token from Global Settings, requires
Pro licensed instance.
MSPro instance: 127.0.0.1, if running locally
Project name: name of an existing workspace into which to import
Import file path: fully qualified path to import file of supported
format
#
require_relative 'metasploit_rpc_client'

CLI arguments
api_token = ARGV[0]
host = ARGV[1]
workspace_name = ARGV[2]
import_file_path = ARGV[3]

unless api_token && host && workspace_name
raise Exception, 'You must specify an API token, an instance address, and a workspace
name.'
end
unless import_file_path
raise Exception, 'You must specify an import file path.'
end

Make the client
client = MetasploitRPCClient.new(host:host, token:api_token, ssl:false, port:50505)

Import config
import_hash = {
workspace: workspace_name,
Toggle datastore options (documented, with some exceptions, like
this handy one) thusly:
DS_AUTOTAG_OS: true,
TODO Update with correct path:
DS_PATH: import_file_path
}

import = client.call('pro.start_import', import_hash)
puts "\nStarted import: \n#{import}"

Exporting Data

Examples of export listing, download, and generation via
RPC API.
#
Usage:
ruby export_api_test.rb <SERVICE KEY> <MSPro instance> '<WorkspaceName>'
#

Tutorial 79

Service key: Generate an API token from Global Settings, requires
Pro licensed instance.
MSPro instance: 127.0.0.1 if running locally
#
#

require_relative 'metasploit_rpc_client'

Setup stuff from CLI
api_token = ARGV[0]
host = ARGV[1]
workspace_name = ARGV[2]

Make the client
client = MetasploitRPCClient.new(host:host, token:api_token, ssl:false, port:50505)

Exports
List current exports
export_list = client.call('pro.export_list', workspace_name)
puts "Existing Exports: #{export_list}"

Create export
export_types = ['zip_workspace','xml','replay_scripts','pwdump']
export_config = {created_by: 'whoareyou',
export_type: export_types[0],
workspace: workspace_name}
export_creation = client.call('pro.start_export', export_config)
puts "Created export: #{export_creation}"

Download export
export_id = 1
export = client.call('pro.export_download', export_id)
tmp_path = "/tmp/export_test_#{export_id}#{File.extname(export['file_path'])}"
File.open(tmp_path, 'w') {|c| c.write export['data']}
puts "Wrote export #{export_id} to #{tmp_path}"

Tutorial

Find Linux Servers that allow me to log in as root using a known credential

Let's lay out the testing scenario. Assume, through onemethod or another, I've obtained the clear-text
password for a single user - Bob. I have Bob's Windows credentials and can easily, through RDP or
psexec, access his machine. I've determined that Bob is a Linux Administrator. I wish to determine what,
if any, Linux servers allow me to log in as "root" using Bob's compromised password. There are a number
of ways to accomplish this. Below is one suchmethod.

Tutorial 80

nmap 10.0.1.1/24 -p22 -oG ssh_scan.gnmap

The file, ssh_scan.gnmap, contains our live hosts and the status of SSH. We'll need to clean up the
results file to hone in on only those hosts with SSH "open." The following command does just that and
saves the target IPs to a separate file:

cat ssh_scan.gnmap | grep open | cut -d " " -f 2 > ssh_hosts.txt

We now have a file named ssh_hosts.txt that contains a list of IP addresses running SSH. Next, let's start
Metasploit and theMSGRPC interface:

msfconsole msf exploit(handler) > loadmsgrpc Pass=pa55w0rd

[*] MSGRPC Service: 127.0.0.1:55552

[*] MSGRPC Username: msf

[*] MSGRPC Password: pa55w0rd

[*] Successfully loaded plugin: msgrpc msf exploit(handler) >

At this point, Metasploit's RPC interface is listening on port 55552. We can proceed to write our Python
script to automate the task of testing SSH logins. I highly recommend you look over Metasploit's Remote
API Documentation before proceeding. The following pseudo code addresses our needs:

Authenticate toMetasploit's MSGRPC interface (username: msf, password: pa55w0rd).

Create aMetasploit console.

For each Linux host in the file, run the SSH_login module using Bob's compromised password of 's3cr3t'.

Destroy theMetasploit console (clean up to preserve resources).

Interact with any SSH sessions established.

A complete listing of the Python source is below (be gentle, I'm not a programmer). To proceed with the
testing, I update the user settings at the top of the script to reflect a USERNAME of "root" and a
PASSWORD of "s3cr3t" (which is Bob's compromised password). Save the changes and run the Python
script:

./msfrpc_ssh_scan.py

[+] Authentication successful

[+] Console 0 created [!] Testing host 10.0.1.43

[+] Listing sessions... Session ID Target 1 root@10.0.1.43

Tutorial 81

Looking at the session listing, the script successfully authenticated as "root" using Bob's password on
host 10.0.1.43. OurMetasploit console that we started previously confirms this fact:

msf exploit(handler) >

[*] Command shell session 1 opened (10.0.2.10:43863 -> 10.0.1.43:22)...

msf exploit(handler) > sessions -l

Active sessions

===============

1 shell linux SSH root:s3cr3t (10.0.1.43:22) 10.0.2.10:43863 -> 10.0.1.43:22 (10.0.1.43)

	Revision History
	RPC API
	Starting the RPC Server
	Connecting to the RPC Server
	Calling an API
	Setting up a Client to Make an API Call
	Authentication
	Making a Request
	Understanding Server Responses
	Encoding Requests and Responses
	Versioning API Endpoints

	Standard API Methods Reference
	Authentication
	Core
	Console
	Jobs
	Modules
	Plugins
	Sessions

	Pro API Methods Reference
	Pro General API
	Pro License API
	Pro Updates API
	Pro Task API
	Pro Feature API
	Pro Import API
	Pro Loot API
	Pro Module API

	Sample Usage
	Adding a Workspace
	Listing, Downloading, and Generating a Report
	Importing Data
	Exporting Data
	Tutorial

